
page 1

B
y

To
m

Wi
ll
m
o
t

&

J
o
e

H
oy
l
e

U
p
d
a
te
d

M
ay

2
01
9

Headless
WordPress:
The Future
DXP
Omnichannel and progressive solutions for
enterprise, featuring case studies from:

{white-papers}

CONTENTS

About the authors // 3

Human Made & WordPress // 3

Executive Summary // 4

01. The Headless CMS

5

03. What is a REST API?

13

05. Case Study:
Fairfax Media

20

07. Case Study: ustwo

27

09. Challenges presented
by the REST API

34

02. Case Study:
TechCrunch

10

04. What is the
WordPress REST API?

17

06. Why use the
WordPress REST API?

23

08. How the REST API
has changed WordPress
development

30

10. Case Study: NPM

37

Glossary // 39

Resources // 41

Word on The Future // 42

Human Made | Altis // 43

Contact us // 44

page 3

About the authors

Tom Willmot is the CEO
of Human Made, where
he is responsible for
company direction,

project management, and client
relationships. When not working
with clients he contributes back
to the open source community.

Joe Hoyle is the CTO of
Human Made, where he
leads the development
team and the overall

technical direction of the company.
He is a member of the WordPress
REST API development team.

Contributors:

• Siobhan McKeown
• Ryan McCue —

WordPress REST API co-lead
• Daniel Bachhuber —

WordPress REST API team
• Noel Tock
• Petya Raykovska
• Ant Miller
• Robert O’Rourke
• Barbara Marcantonio
• Nevena Tomovic
• Ana Silva

Human Made
& WordPress

Human Made are one of the leading
contributors to the WordPress
project, and have been actively
involved in developing the software
since version 3.0. Our involvement
in WordPress spans years of
modifications and evolutions
and we have seen dramatic
changes to the way WordPress
has been adopted across a range
of industries and enterprises.

page 4

Executive Summary

WordPress is an open-source
content management system
which is used to power millions
of websites and blogs, and
an increasing number of web
applications. It currently
powers more than 33% of the
top 10 million websites on the
Internet. WordPress' usability,
extensibility, and mature developer
community make it a popular
choice for websites of all sizes.

WordPress, like many other CMSs,
is monolithic. It provides everything
you need to run a website, and
can be extended further with
third-party plugins and themes.
But on today’s web, we are moving
beyond the monolithic CMS.
WordPress, along with others,
is leading the charge to a future
where the CMS acts as a central
hub, consuming and aggregating
content and data from other tools
and services and in-turn exposing
its own content and data via APIs.

The WordPress REST API is a huge
step towards this future. Exposing
WordPress content and data as
JSON via a standardised RESTful
API unlocks your data and will
enable an explosion in the number
and complexity of integrations.

By embracing the WordPress
REST API, you can more easily:
separate your frontend delivery
from the CMS, power multiple
frontends from the same content
(think a website, app, Apple
News, etc.), and use WordPress
as part of complex multi-
service workflows (like pushing
content to a separate service for
translation before pulling those
translations back into WordPress).

The potential implications for
your business are far-reaching,
particularly for large custom
builds and applications. WordPress
provides content management
and content capture, while
making the data available to
other frontend technologies.
This permits engineering
teams to work independently
on discrete parts of a larger
project, and allows for more
stable third-party integrations.
With the REST API, WordPress
stops being a web development
tool used in isolation. It is
one module that is available
in a web developer's toolkit;
a building block to be used in
many kinds of applications.

https://w3techs.com/technologies/history_overview/content_management/all/y
https://w3techs.com/technologies/history_overview/content_management/all/y
https://w3techs.com/technologies/history_overview/content_management/all/y
https://w3techs.com/technologies/history_overview/content_management/all/y

page 5

01 The
Headless
CMS
A headless CMS is used only for
data capture, storage, and delivery,
making it frontend agnostic. Its data
can be displayed using any frontend
technology, whether in a browser,
mobile application, syndication, or
elsewhere.

page 6

A traditional CMS deals with
data collection, delivery, and
display. WordPress, for example,
has a backend where users can
enter data. This data is stored
in a MySQL database, retrieved
from the database using PHP, and
then displayed in the browser
using the Theme system.

A headless CMS decouples the
Theme system, allowing you to
replace it with the frontend
technologies of your choice.
What's left is the data storage
method and web application
for authors and editors, while
the data is delivered to the
frontend using an API.

Monolithic vs Headless

PHP
controls
the data

Data
retrieved
by JS or
other
language

Database

Front-end

Database

PHP
renders
the
data

Front-end

page 7

Decoupling content
management from
frontend display

By decoupling content
management from frontend
display, a headless CMS allows
developers to use any technology
to display content. Developers
are not locked into the templating
engine provided by the CMS. The
CMS might be written in PHP, but
developers working in languages
like JavaScript, React, React
Native, and Vue.js, can use an
API to retrieve, store, and display
data. A frontend developer has
complete control over the website
or application’s markup and user
experience, using client-side
technologies to create smooth
interactive experiences. It also
means that if the frontend needs
to be displayed in a new way (for
example a redesign or to display
content on a new device) the CMS
can still hold the data, removing
the need for complex migrations.

Fast, interactive
experiences
When you use a headless CMS
there are two components: the
CMS itself and the frontend display.
By splitting up your website or
application in this manner, you
can improve performance and
provide a superior user experience.
The CMS focuses only on content
management, without having to
assemble formatted responses,
while the client-side technology
can quickly display that data in
the browser. Using client-side
technologies for display means
that in-browser experiences are
fast, acting in real-time, without
having to wait for PHP to generate
entire pages. There is a significant
increase in performance when
using JavaScript vs PHP: Node.
js, for example, can handle many
more requests than PHP due to its
asynchronous event driven nature.
This can be especially useful when
an application requires many
connections open simultaneously.

http://www.hostingadvice.com/blog/comparing-node-js-vs-php-performance/
http://www.hostingadvice.com/blog/comparing-node-js-vs-php-performance/
http://www.hostingadvice.com/blog/comparing-node-js-vs-php-performance/

page 8

One content
management system,
multiple frontends

With a traditional, monolithic CMS,
data is simply displayed by the CMS
itself. Data stored in a headless
CMS is available for display in any
context. You may want to use it
for a website now, but later you
may decide to use the same data
for a desktop or touch screen
application. The stored data is
always available via the API.

CMS

REST API

page 9

A headless CMS can be used to
store all of the data for one site or
application, or it can just be one
element of a larger application
that retrieves and aggregates
data. This means that data can be
integrated into existing workflows
as just one layer. For example,
it could be used just as a layer
for translating content which is
then pushed to another CMS.

Multi-service content
pipelines

Pushed to WordPress
via REST API

Translated articles are pushed
to multiple CMSs

APP
BACKEND

CMS for mobile

WEBSITE
BACKEND
CMS for websites

PRINT CMS
Original

WORDPRESS
Articles are translated using
custom workflow in

News

RSS Feed

page 10

CASE STUDY:
TECHCRUNCH

02

We joined TechCrunch as technology
partners for their latest renovation
project, resulting in a full site rebuild
and a WordPress CMS with a headless
React frontend, on traditional managed
WordPress hosting.

https://tech-
crunch.com/

Why use WordPress
and the REST API?

TechCrunch adopted WordPress
and the REST API to help them
decentralise their publishing
experience: ensuring they could
keep the editorial simplicity
inherent with a WordPress
backend, whilst making use of
the REST API to create a user
friendly frontend. Maintaining
WordPress’ backend on their
system enables their non-technical
teams to independently run
individual pages: making use of
React on the frontend enables
editors and authors to create
tailor made solutions for each
new page, empowering more
people in their team to write and
publish content effectively.

The build

With TechCrunch, we implemented
a headless CMS on a PHP-only
hosting infrastructure, hosted
with WordPress.com VIP Go.
We introduced our own VIP Go
Builder which was later adopted
by WordPress.com VIP, adding
a build process that only has to
deploy the master-build branch
to send all merged changes live to

the production website. For our
local development environment,
we extended the React app
tool with WordPress specific
customisations. This meant we
could load the application and
the stylesheets from WordPress.

We used React on the frontend
to display data, which required
us to repeatedly write the same
boilerplate code to retrieve data
from WordPress. The repetitive
nature of this task inspired us to
create Repress, a Redux Library
for the WordPress REST API. This
enables developers to retrieve
data from the REST API, and add
it to the store with just a few
lines. Unlike many other React
libraries for WordPress, Repress
can be added to an existing store,
allowing progressive adoption; and
can even be combined with other
methods of retrieving data from
the WordPress REST API. Repress
not only enabled us to facilitate
the process of retrieving data
from WordPress; it also introduces
a higher order component to
interface with React, making it
easy to add data management to
presentational React components.

On the frontend we were able to
create specific page functions, like
the river homepage experience

page 11

https://github.com/humanmade/vip-go-builder
https://github.com/humanmade/vip-go-builder
https://github.com/humanmade/repress

page 12

that creates a seamless and
responsive user experience;
enabling users to scroll and click on
an article, that then snaps closed
to resume their exact browsing
position on the homepage. We also
introduced the developing stories
feature, helping TechCrunch’s
editorial team break news stories
faster and more effectively. The
developing story feature allows
for short pieces of content to
be displayed, and later grouped
under one overarching headline
to be viewed as a whole.

We also integrated their partner
database for startup news,
Crunchbase. Our team of engineers
integrated the Crunchbase API
with the React frontend to display
detailed information on companies,
investors, founders, and more, as
hover cards within the articles.

Read more about Our React Tools
for WordPress by Ryan McCue.

“We wanted our redesign to be
ambitious, and it was critical
for us to choose a development
partner who could deliver
it without compromising
on our aspirations.

Our design focused on fluid
and interesting interactions
over bold visual statements,
heavily influenced by our
decision to use the WP REST
API with a JavaScript frontend.
As such, it made sense to
choose a partner that brought
expertise in that realm, which
Human Made certainly did."

NICOLE WILKE
Head of Product, TechCrunch

https://techcrunch.com/
https://techcrunch.com/
https://www.crunchbase.com/
https://humanmade.com/2018/03/12/our-react-tools-for-wordpress/
https://humanmade.com/2018/03/12/our-react-tools-for-wordpress/

page 13

What is a
REST API?

03

POST, GET, PUT, DELETE: Dive into what
a REST API is, why it’s RESTful, and what
makes it open.

page 14

What is REST?

Representational State Transfer
(REST) is a software architectural
style for Application Programming
Interfaces (APIs) that consists of
guidelines and best practices for
creating scalable web services.
REST uses simple HTTP to make
calls between machines. This
happens via a request/response
mechanism between the server
and the client. For example,
a client, let’s say an Android
application, makes a request for
the most recent posts from the
website. The server knows how
to interpret this request, through
REST, and satisfies the response by
providing the most recent posts in
a format understood by the client.

REST requests interact with the
resources in your application (e.g.
a Post or Page). These interactions
are typically Reading, Creating,
Updating, or Deleting. Combined
with HTTP, REST requests are
formed using four verbs:

• POST: Create a resource
• GET: Retrieve a resource
• PUT: Update a resource
• DELETE: Delete a resource

The data retrieved is supplied in a
machine-readable format, often
JSON in modern web applications.

What makes an API
RESTful?
An API must have the following
architectural features to
be considered RESTful:

• Client-server: the client is

separated from the server.
This means that clients are
not concerned with data
storage and servers are not
concerned with display. This
ensures that data is portable
and can be reused in multiple
clients, and servers are
simpler and more scalable.

• Cacheable: clients can, and
should, cache responses
to improve performance,
and avoid the server
with every request.

• Stateless: the necessary
state to handle the request
is contained in the request
itself, whether as part of
the query parameters,
URL, body, or headers.

• Uniform interface: information
transferred via REST
comes in a standardised
form, creating a simplified,
decoupled architecture.

page 15

Source:
Program-
mableWeb

A separate, but closely-related
concept is hypermedia. Similar
to how hyperlinks on the human-
readable web enable discovering
new sites and content, hypermedia
allows a client to more fully
discover a REST API without
needing to know anything about
the structure of the API. Instead,
the server provides whatever
information the client needs to
interact with it. This means that the

• Layered System: the
architecture is composed
of hierarchical layers. Each
component cannot “see”
beyond its layer: a client cannot
tell if it’s connected to the
server or to an intermediary.

• Code-on-Demand: REST
allows client functionality to
be extended by transferring
applets or scripts.

Growth in Web APIs since 2005

https://www.programmableweb.com/news/programmableweb-api-directory-eclipses-17000-api-economy-continues-surge/research/2017/03/13
https://www.programmableweb.com/news/programmableweb-api-directory-eclipses-17000-api-economy-continues-surge/research/2017/03/13

page 16

client can interact with the server
in complex ways without knowing
anything beforehand about it.

What is an Open API?

Open APIs are publicly available
APIs that give developers access to
proprietary software information
that they can make use of in their
own software and applications.
REST is the ideal architecture
for creating an Open API for the
web because, by using HTTP,
it is built on the principles of
the open web. To leverage an
open REST API a developer just
needs to make a HTTP request.

By making data available for
developers to use in their
own applications, open APIs
are transforming the internet.
Developers can access data across
services, creating applications

that aggregate information
from different providers, and
leveraging that data to their own
needs. The impact of APIs cannot
be underestimated; they are
transforming the way businesses
and services are run. For example:
• Around 25% of annual revenue

of the fundraising platform
Justgiving is API-driven

• In 2011, Twitter reported
that they had more than one
million applications registered,
with a number of entire
companies built off the API

• The Skyscanner API is
leveraged by startups who
make use of its data feeds

• Hilton is making use of Uber’s
API to allow guests to book rides
from the Hilton Honors App

This aggregation of public data
across different platforms enables
the creation of feature-rich,

http://www.3scale.net/2014/08/justgiving-api-grows-giving-non-profits-profits-alike/
http://www.3scale.net/2014/08/justgiving-api-grows-giving-non-profits-profits-alike/
http://www.3scale.net/2014/08/justgiving-api-grows-giving-non-profits-profits-alike/
https://blog.twitter.com/2011/one-million-registered-twitter-apps
https://blog.twitter.com/2011/one-million-registered-twitter-apps
https://blog.twitter.com/2011/one-million-registered-twitter-apps
http://www.programmableweb.com/news/why-skyscanner-api-appeals-to-travel-startups/elsewhere-web/2015/11/21
http://www.programmableweb.com/news/why-skyscanner-api-appeals-to-travel-startups/elsewhere-web/2015/11/21
http://techcrunch.com/2015/09/01/checking-out-hiltons-app-now-lets-you-get-an-uber/#.gf7z2t:aZiC
http://techcrunch.com/2015/09/01/checking-out-hiltons-app-now-lets-you-get-an-uber/#.gf7z2t:aZiC
http://techcrunch.com/2015/09/01/checking-out-hiltons-app-now-lets-you-get-an-uber/#.gf7z2t:aZiC

page 17

WHAT IS THE
WORDPRESS
REST API?

04

Transforming WordPress into a headless
CMS with the REST API.

page 18

powerful applications that do
more than any individual product
or service could do on its own.

The WordPress REST API allows
access to a website’s data,
including users, posts, and
taxonomies. In the past, developers
needed to use WordPress’ built-in
Theme system and administration
panel to display and edit content
on a site. The REST API decouples
the WordPress backend from the
frontend, allowing developers to
use it as an application platform:
WordPress is used for data entry
and storage, and the frontend
can be built in any programming
language. The REST API transforms
WordPress into a headless CMS.

Endpoints

Endpoints are functions that are
available through the API: they’re
the places where developers
can do something with the CMS,
whether that’s creating, retrieving,
updating or deleting (CRUD)
data. This includes the four core
data types in WordPress (posts,
comments, terms, and users)
initially, although these will grow
in future versions of WordPress

to support all data on the site.
If you are building a website,
application, theme or plugin, you
can leverage the API by adding
your own custom endpoints.

Authentication

A major challenge around building
a REST API is authentication: how
does an API know that a user
should be allowed to update
content on a site, for example?
Who should be allowed to retrieve
data? Under what conditions?
The WordPress REST API uses
two forms of authentication:

• Cookie — this is the basic
authentication method used
in WordPress. When you log
into your dashboard a cookie
is set in your browser. This
method is only viable when
the current user is logged
into WordPress and that user
has the capability to perform
the action requested.

• OAuth — this is the main
authentication method used
for external clients, i.e. any
third-party site or application
that wants to interact with
the API. With OAuth, logged in
users can authorise clients to
act on their behalf. Clients are
issued with OAuth tokens so
they can interact with the API.

http://v2.wp-api.org/extending/adding/

page 19

The REST API is now focusing
development on OAuth 2.0,
after recently upgrading from
OAuth 1.0. OAuth 2.0 requires
HTTPS, and due to the increased
uptake of SSL across the web, the
decision was made to transition
to the more modern plugin.
Additionally, OAuth 2.0 provides
a more streamlined solution to
the distributed API problems.

As well as these methods, there
is a Basic Authentication method
for external clients. However,
this is only recommended for

development environments as it
involves passing your username and
password on every request, and
giving your credentials to clients.

The Team

The WordPress REST API
has contributions from 96
developers. However, the team
has five main contributors:

• Ryan McCue (Human Made),
co-lead of the REST API project

• K. Adam White (Human Made),
co-lead of the REST API project

• Joe Hoyle (Human Made)
• Daniel Bachhuber (Hand Built)
• Rachel Baker (Wirecutter),

co-lead emeritus of the
REST API project.

https://github.com/rmccue/wordpress-rest-api-oauth-2
https://github.com/rmccue/wordpress-rest-api-oauth-2
https://github.com/rmccue/wordpress-rest-api-oauth-2
https://github.com/rmccue/wordpress-rest-api-oauth-2
https://github.com/WP-API/WP-API/graphs/contributors
https://github.com/WP-API/WP-API/graphs/contributors

page 20

Case Study:
Fairfax Media

05

We joined Fairfax Media for an end-
to-end newsroom transformation,
and utilised the REST API to improve
editorial workflows and publishing
processes for Australia’s leading
media brand.

https://www.
fairfaxmedia.
com.au/

https://www.fairfaxmedia.com.au/
https://www.fairfaxmedia.com.au/
https://www.fairfaxmedia.com.au/

page 21

journalists to select an article that
is then injected into WordPress
for editing, customisation, and
publishing. Once we’d built
the wire feed importer we
began to refine other areas of
the editorial process through
modifications on the edit screen.

The WordPress edit screen can be
slow, and overall does not offer
a modern publishing experience.
This is further challenged by
the publishing demands of an
enormous media organisation,
requiring multiple people to
publish content around the
clock. One of the most impactful
changes we made was to utilise
the REST API to help the edit
screen load faster, and prevent
the lag which is caused by the
‘Update’ (post) button, resulting
in the page refreshing in order
to effect an editorial change.
There were several reasons we
used the REST API technology to
achieve this; namely, because
we were extensively customising
the edit screen and because we
wanted the edit screen to feel
modern, responsive, and dynamic.
The way to achieve this is by
enforcing changes directly in the
browser to prevent delays, and
the most practical way of making

Why use WordPress
and the REST API?
Fairfax Media wanted a tech
partner to support them through
their latest digital evolution, and
implement solutions to streamline
and improve their editorial
and publishing experience.

They approached Human Made
with a large-scale initiative:
building a custom CMS based
on headless WordPress, with a
modern publishing workflow,
and an audience facing React.js
based frontend (both of which
were developed in-house). The
REST API was instrumental in this
process; enabling us to update,
streamline, and improve their
editor screen, and helping us build
a modern newsroom experience.

The build

Fairfax wanted to move quickly
towards new and more effective
publishing workflows for their team
of editors and journalists. One of
the first tasks we undertook was to
create a custom feature to allow
journalists to search the Fairfax
Content API for wire feeds from
other news sources. This allows

https://humanmade.com/2018/05/11/rebuilding-wordpress-edit-screen/
https://humanmade.com/2018/05/11/rebuilding-wordpress-edit-screen/

page 22

this happen in WordPress is to
communicate with the REST API.
At Fairfax Media, WordPress is
used as an editorial interface
only and the system by which
reporters’ create and file stories.
But it is WordPress’ capacity to
communicate with the wire feed,
content, and media APIs, that
enabled us to create a flexible and
streamlined tool for the modern
newsroom. This approach was key
to Fairfax. It not only enabled them
to centralise their data, providing
more consistency and convenience
to the newsroom workflow: it also
created a clean workspace they
could use as a place for data entry,
making their admin area much
more professional and efficient.

Download our full Fairfax Media
white paper to explore how we
improved publishing workflows for
Australia's leading media brand.

“Human Made were
instrumental in developing
our Editorial experience."

"Human Made's expertise
in WordPress was key to a
successful outcome"

DAMIEN CRONAN
CTO, Fairfax Media

https://humanmade.com/what-we-do/projects/fairfax-media/
https://humanmade.com/what-we-do/projects/fairfax-media/

page 23

Why use the
WordPress
REST API?

06

From centralising your data and
services, to using WordPress as a
module in a larger stack, discover
the myriad of uses for the WordPress
REST API.

page 24

the API and can be delivered to
websites, web applications, and
mobile and desktop applications.

Separation of concerns

In traditional WordPress
development, where the frontend
and backend are tightly coupled,
frontend developers need to
be familiar with at least some
aspects of WordPress. This makes
it difficult to hire and work with
purely frontend developers. In a
decoupled environment this is
no longer a problem. Different
teams can work on different
project elements while having
access to the same data: a
backend team can work on
WordPress and the database,
a team can build the frontend
in JavaScript or another web
technology, you can have an iOS
team and an Android team. Your
JavaScript developer no longer
needs to learn PHP to work with
WordPress, and your WordPress
developer no longer needs to
tinker with JavaScript. This
widens the pool of development
talent available to work on your
website or application, and
streamlines project management.

Create context-specific
solutions
Over 33% of the most popular
websites use WordPress. These
websites are PHP-based, with
frontends built with the WordPress
Theme system. The API frees
developers and allows them
to use any technology that will
solve a problem in their specific
context. WordPress no longer
has to be concerned with the
frontend: it can just deliver data
to any frontend technology. A
developer can take data from a
WordPress website and display
it using the technology of their
choice, whether that’s for a
website, Android application,
iOS application or whatever
context the data is needed.

Reusable, portable
content
The content entered into
WordPress is no longer limited to
being displayed on a WordPress
website. A REST API powered
website has content which is
infinitely portable. Your content
authors only need to enter
data in one place. Once it has
been authored and published in
WordPress, it's now available via

page 25

received via WebSocket from a
custom-built service, rendered in
React, and served to the frontend
via the WordPress REST API. In
August 2015, the paper even added
Slack to its publishing workflow.
This makes WordPress just one
module in a larger stack, making
it more available to the wider
web development community
for smaller, specific tasks.

WordPress as a central
repository
The web is increasingly API-
driven, with websites and services
aggregating data. The REST API
makes it possible for WordPress to
be the central place that brings all
of this data together. This means
that all of your services and data
can be centralised while providing
your authors with a straightforward
interface that they are familiar
with. This also provides a standard
platform for further functionality
with WordPress’ plugin system.

Familiar backend for
authors and publishers
One of the reasons WordPress
has been so successful is that it
provides an easy-to-understand
interface for non-technical
users. With the REST API, you
don’t have to decide between
using your frontend technology
of choice and giving your authors
the admin interface they want.
Authors and editors can work in
the WordPress admin and the data
is delivered to the frontend by
the API. You have the advantage
of providing an admin interface
which many authors will already
be familiar with, reducing the
the need for training and re-
training, and letting authors
quickly start adding content.

Integrate WordPress as
one part of a content-
authoring workflow

WordPress may only be suitable
for one aspect of your website or
application. The REST API allows
you to use WordPress for just
those elements that it is suitable
for. The New York Times, for
example, uses WordPress for its
live coverage platform: data is

http://www.niemanlab.org/2015/08/the-new-york-times-live-blogged-last-nights-gop-debate-directly-from-slack/
http://www.niemanlab.org/2015/08/the-new-york-times-live-blogged-last-nights-gop-debate-directly-from-slack/
http://www.slideshare.net/ScottTaylor1/2015-wordcamp-maine-keynote
http://www.slideshare.net/ScottTaylor1/2015-wordcamp-maine-keynote

page 26

Develop with live data

When data is exposed through
the REST API it can be used by
developers in their development
environment. Content can be
added to the CMS and is available
to developers whether they are
working on the frontend, the
admin, or any applications.

page 27

Case Study:
ustwo

07

ustwo wanted a decoupled website with
a WordPress backend and a frontend
built with React.

https://www.
ustwo.com/

http://ustwo.com
https://www.ustwo.com/
https://www.ustwo.com/

page 28

Why use WordPress
and the REST API?
WordPress provides a
straightforward interface that
the company’s global marketing
team can use to author content.
It’s free and open source, so the
ustwo design team could focus
entirely on the frontend, without
wasting time rolling their own CMS.

DANIEL DEMMEL
Full stack web developer, ustwo

“We chose WordPress as we
wanted to have an established
open source CMS so that we
can be confident that we'll
never be left without support
or ability to change. To fulfil
our design ambitions we
decided to build our frontend
as a single-page application,
which was made possible
with the emerging WP-API.”

page 29

On the WordPress side, a
custom page builder plugin gets
authors to enter content in a
modular fashion. This ensures
that the content is modular and
portable to different contexts.

The infrastructure for the REST
API is used along with a bespoke
API comprising custom endpoints
that deliver content in JSON
format to the frontend.

The build

The ustwo website is a single-
page application: the frontend is
built using React and WordPress
manages the content. React
was used because it allows for
isomorphic rendering (pages
can be rendered on the server
or by the client). There is a
Node.js server that enables
server-side rendering.

Source:
uswtwo

https://github.com/mattheu/modular-page-builder
https://github.com/mattheu/modular-page-builder

page 30

08

With the REST API, WordPress has
evolved from being a web development
tool used in isolation to one module
available in a web developer’s toolkit.

How the REST
API has changed
WordPress
development

page 31

WordPress as part of a
larger stack
WordPress has a familiar and
easy to use user interface
which authors want to use for
managing and publishing content.
With the REST API, you can
provide this interface to your
authors without compromising
on the rest of your stack.

Permeation of
WordPress outside of
PHP communities

As a single module in a larger stack,
WordPress can be used outside
of its traditional community. The
REST API allows developers to
create websites and applications
in any language without having
to roll their own CMS.

New approaches to
project management
The separation of concerns that
come with a REST API project mean
approaching project management
in a new way. Developers are
able to independently focus on
different aspects of the website
or application, working with live
data retrieved using the API.

The emergence of
funnelled, role-based
admins

The REST API allows developers to
create funnelled administration
experiences that focus on a
particular user doing particular
actions. These focused admins
will remove the clutter and
empower the user to do exactly
what they need to do.

The enhancement of
built-in WordPress
functionality

The REST API makes it easier
for developers to enhance
functionality in the WordPress
admin. Developers can create
client-side features in the
admin that are more advanced
and more performant than
can be achieved with PHP.

Explorations in non-
GPL products
The absolute separation of
concerns means that frontend
products that retrieve data from
the API will not need to be GPL.

page 32

Above:
A screenshot
from the
Gutenberg
editor.

However, we have not seen a
vast increase in API-powered
themes due to the challenges
of rebuilding native WordPress
functionality on the frontend.

Gutenberg & the REST
API: Using modern
technologies to power
advanced applications

Gutenberg is the first project in
WordPress core using the REST
API, and it has changed the way
developers build on WordPress.
For the first time, the REST API
is being used to communicate
data between the server and a
JavaScript powered frontend.

https://riad.blog/2017/10/06/how-gutenberg-is-changing-wordpress-development/
https://riad.blog/2017/10/06/how-gutenberg-is-changing-wordpress-development/

page 33

WordPress and React

The Gutenberg interface is
built in the React JavaScript
framework (owned and authored
by Facebook), the same library
used to power Facebook’s
interface. This is one of many
frameworks in use in WordPress,
and recently it has been the toolkit
of choice for developers building
interactivity that works client-side.

In 2017, long running concerns
about the patent clauses inside
React’s license came to a head.
Facebook had included a clause
stating that should the person
or organisation using the source
code ever sue Facebook for any
kind of patent infringement,
the license would be revoked
— opening the person or
organisation to a counter-lawsuit.

Fortunately, this issue was raised
publicly by the Gutenberg team
and very quickly the license terms
were updated to the MIT license.
Today the licensing of React is fully
compatible with WordPress’ GPL
terms, and there are no licensing
concerns about its ongoing usage.

RYAN McCUE
REST API co-lead

“Gutenberg’s rapid development
speed has shown the power of
the REST API, and how it has
changed the way developers
build with WordPress. The
rich, block-based data
that Gutenberg provides
will continue to push the
developer experience of
WordPress forward, while
also providing a fantastic
new experience for users.”

page 34

Challenges
presented by
the REST API

09

The introduction of the REST API marks
a new era in WordPress development.
It’s not yet entirely clear how the
REST API has changed working with
WordPress, but there are already
emerging challenges.

page 35

WordPress, many people gain
experience of PHP, CSS, and
HTML, gaining confidence to make
changes to the frontend of their
website. The REST API completely
decouples the frontend from the
backend, disempowering those
users, and making the frontend
only editable by developers.

For this reason, it is unlikely that
we will see a major disruption to
the WordPress theme market.
Instead, the REST API will be
of most significance to large
custom builds and WordPress-
based SaaS products.

The necessity for
structured, portable
data

A headless WordPress requires
data that can be used across
multiple contexts. This means
creating and storing it in a way that
is completely frontend agnostic.
In the first instance, you may just
be using data on a website, but
you may want to make it available
later to a native application.
The focus here is on content
management as opposed to web
publishing. This data needs to be

Loss of core
functionality
A REST API driven website loses
frontend features that are linked
to the WordPress Theme system,
like menu management and post
previews. Frontend developers
need to take responsibility for re-
implementing features that come
for free with WordPress. If they are
not rebuilt, users must do without
them. When writing project
specifications for an API-driven
project, it will become necessary
to be very specific about the
features that the client needs and
not just assume that because they
are in WordPress they are available.

To solve this problem, we
anticipate the emergence of
REST API base themes that
rebuild WordPress features on
the frontend. These boilerplate
themes will be written in different
languages and will provide a
starting point for frontend
developers to build on.

Disempowers
WordPress site builders
In addition to its ease of use,
WordPress’ strength is that it is
easy to set up a website. Through

page 36

the organisation they work for
requires it to be turned off. If
content from a REST API driven
WordPress website is delivered to a
JavaScript-power frontend, these
people will simply see a blank page.

Developers need to address these
issues to ensure that the web
stays accessible. One method is
to render frontend templates on
the server using a technology like
Node.js, and then enhance the
website on the frontend using
client-side JavaScript. This setup,
however, requires an additional
server, and developers with the
experience to implement it.

structured in a modular manner,
separate to the CSS and HTML.
For this reason, REST API-
driven sites will not use the
WYSIWYG capability in TinyMCE
for page layouts, instead
using content structured by
modular page builders.

WordPress’ commitment to
backwards (and forwards)
compatibility ensures that data
produced by the API will be
continue to be readable and
usable well into the future. This
means that you can safely store
it knowing that it will continue to
be available by a well-supported
API. In addition, the WordPress
REST API is open, ensuring that
your data can be moved out of
your site using standard tools.

Dealing with
progressive
enhancement

In an increasingly JavaScript-driven
world, progressive enhancement
is a challenge that has to be
addressed. Some people have
JavaScript disabled in their
browser, either because they use
assistance technologies, because
of personal preference, or because

WORDPRESS
Stores the data

Node.js SERVER

BROWSER

Renders pages

Pages enhanced using JS

Data is passed to

REST API

https://github.com/mattheu/modular-page-builder

page 37

Case Study:
NPM

10

NPM wanted to use the REST API to
deliver custom brochure pages and
upsell boxes on their website.

https://www.
npmjs.com/

https://www.npmjs.com/
https://www.npmjs.com/

page 38

The build

The NPM website has a WordPress
backend and admin. A bespoke
API built of custom endpoints
serves content in JSON format to
the Node.js server. This renders
the final HTML and sends it to
the browser where Handlebars
renders the templates. The API
doesn’t just send the data: it sends
rendered HTML along with scripts
and stylesheets. This is cached by
Node.js server so that the website
stays up even if WordPress is
unavailable. It also means that the
website stays fast without having to
expend effort scaling the database.

Some customisations recreate the
post preview feature of WordPress.
Parts of the CSS templates and
handlebars frontend are used to
create a basic WordPress theme.
Authors use this to preview
posts before they are published
and pushed to the frontend.

Why use WordPress
and the REST API?
NPM wanted to use WordPress
as a central repository for their
documentation and their product
pages. Its straightforward interface
meant that content authors could
easily add data, which is delivered
to the client in JSON format.

NICK CAWTHON
Head of Design & UX, npm

“One of things we could
not compromise on was the
integration with the WordPress
REST API. From a security
perspective, we felt as if there
were only a few agencies that
would even have the knowledge
to integrate such a thing at
the level of traffic we receive.
Having been a part of the
steering committee, as well as
given talks about WPs REST API,
we felt that Human Made was
well positioned to help lead us.”

https://www.npmjs.com/package/handlebars

page 39

GLOSSARY

Calypso:
The new WordPress.com interface.
Built from the ground up as a single
JavaScript application that uses
the WordPress.com REST API to
communicate to WordPress core.
Page 24

Client-side:
An alternative term for referring
to the user-facing interface.
Page 7, 31, 33, 36

GPL (General Public Licence):
A common licence used for
open source software.
Page 32, 33

Hypermedia:
Diverse types of interlinked,
nonlinearly accessed media forms,
typically used in the context of
developing web based APIs.
Page 15

JavaScript:
A web programming language
typically used to create
interactive web pages.
Page 7, 24, 25, 32, 36

JSON (JavaScript Object Notation):
A format for storing data in a
human-readable format.
Page 4, 14, 29, 38

MySQL:
An open source database
management system.
Page 6

Node.js:
An open source server
environment.
Page 7, 29, 36, 38

OAuth (Open Authorisation):
An open standard for authorisation
on the internet, and a process
whereby users can log in to
third party websites without
exposing their passwords.
Page 18, 24

PHP (Hypertext Processor):
An open source server-side
programming language.
Page 6, 7, 11, 25, 26, 32, 35

React:
A JavaScript library for
building user interfaces.
Page 11, 26, 29, 33

continues -->

https://opensource.org/licenses/gpl-license

page 40

React Native:
A framework for building
mobile applications using
JavaScript and React.
Page 7

Redux:
An open source extensible
options framework for WordPress
themes and plugins.
Page 11

Repository:
A central location where all
associated code is stored.
Page 27, 38

Repress:
A library which takes control
of part of your Redux state
and handles talking to the
WordPress REST API.
Page 11

SSL (Secure Sockets Layer):
The standard security
technology for establishing
an encrypted link between a
web server and a browser.
Page 18, 24

Vue.js:
An open source JavaScript
framework for building
user interfaces.
Page 7

page 41

RESOURCES

Links

The WordPress REST API:

• Official website and
documentation

• WordPress core discussion
about the REST API

Client Libraries:

• Node.js
• Backbone.js
• AngularJS
• PHP Client

Authentication:

• OAuth 2.0
• Basic Authentication

Tools:

• WP-CLI client
• API Console
• WP JSON API Connect
• API client UI
• Restplain
• Repress

Other resources:

• Picard React theme
• ustwo.com frontend

A Day of REST — The
WordPress REST API
Conference

In 2016 and 2017, we held two
conferences on the REST API in
London and Boston, respectively.
With speakers from The New
York Times, Human Made, Wired,
Automattic, and Bocoup, including
co-leads of the REST API project,
we explored how people are using
the REST API in their projects.

Watch the full event videos here:

 A Day of REST London, 2016

 A Day of REST Boston, 2017

Above:
K. Adam White
presenting on
the REST API
at ADoR 2017
in Boston.
K. Adam is a
component
maintainer for
the WordPress
REST API
“wpapi”
package on
npm.

http://v2.wp-api.org/
http://v2.wp-api.org/
https://make.wordpress.org/core/tag/rest-api/
https://make.wordpress.org/core/tag/rest-api/
https://github.com/kadamwhite/wordpress-rest-api
https://developer.wordpress.org/rest-api/using-the-rest-api/backbone-javascript-client/
https://github.com/jeffsebring/angular-wp-api
https://github.com/WP-API/client-php
https://github.com/WP-API/OAuth2
https://github.com/WP-API/Basic-Auth
https://github.com/WP-API/client-cli
https://github.com/Automattic/wp-api-console
https://github.com/WebDevStudios/WP_JSON_API_Connect
https://github.com/modemlooper/Api-Clients
https://github.com/humanmade/Restsplain
https://github.com/humanmade/repress
https://github.com/Automattic/Picard
https://github.com/ustwo/ustwo.com-frontend
https://www.youtube.com/watch?v=-_6PiKU-xsE&list=PL1H81eN4d97h85qEO0dRrFKbljkyrUM6G
https://www.youtube.com/watch?v=gABOgoci7OY&list=PL1H81eN4d97g7hqvUhSNiVW91aok71B_X

page 42

Word on the Future
— The Inside Track on
Enterprise WordPress

Stay informed about the future
of digital experiences with our
Enterprise Newsletter, ‘Word on
the Future’— covering the inside
track on Enterprise WordPress
news with curated opinions and
insights from those at the heart of
the industry.

Subscribe at altis-dxp.com/
newsletter to get:

 ✓ Curated opinions and insights
on the latest WordPress
news from some of the most
respected professionals
in the industry.

 ✓ Cut-to-the-chase stories you
can consume in under 10 mins,
direct to your inbox every
month. Early access to white
papers and documentation
published by Human Made.

 ✓ Information to help you lead the
future of your business, sourced
from across the ecosystem
with summaries highlighting
news relevant to you.

THE INDUSTRY
NEWSLETTER
FOR
WORDPRESS
by

https://humanmade.com/enterprise-wordpress-newsletter/
https://altis-dxp.com/newsletter
https://altis-dxp.com/newsletter
https://altis-dxp.com/newsletter

Human Made is an award-
winning, global WordPress
agency and leading providers
of digital experience
platforms for enterprise.

Altis is our next-generation digital
experience platform: backed by
10+ years of globally recognised
engineering excellence building
solutions for enterprises and
leading brands. With deep
roots in open source, Altis is a
proven end-to-end enterprise-
augmented WordPress platform.

page 43

Above:
The Human
Made team
during a
company
retreat in Sri
Lanka, in 2019.

https://altis-dxp.com

page 44

Talk to us today. Discover Altis.
sales@altis-dxp.com

DIRECTOR(S) OF CLIENT SERVICES:

Americas

Sam Sidler
samuel.sidler@altis-dxp.com

Lonnie Tapia
lonnie@altis-dxp.com

Europe, Middle East, and Africa

John Bevan
john.bevan@altis-dxp.com

Ruxandra Gradina
ruxandra@altis-dxp.com

Asia Pacific

Jon Ang
jon.ang@altis-dxp.com

Shinichi Nishikawa
shin@altis-dxp.com

Ant Miller, Commercial Director
ant@altis-dxp.com

T
h
a
n
ks

fo
r

r
e
a
d
i
n
g!

mailto:sales%40altis-dxp.com?subject=
mailto:samuel.sidler%40altis-dxp.com?subject=
mailto:lonnie%40altis-dxp.com?subject=
mailto:john.bevan%40altis-dxp.com?subject=
mailto:ruxandra%40altis-dxp.com?subject=
mailto:jon.ang%40altis-dxp.com%20?subject=
mailto:jon.ang%40altis-dxp.com%20?subject=
mailto:shin%40altis-dxp.com?subject=
mailto:shin%40altis-dxp.com?subject=
mailto:ant%40altis-dxp.com?subject=
mailto:ant%40altis-dxp.com?subject=

	Button 4:

